

Presentation Outline

- Peabody Introduction
- NOx Trends
- Peabody NOx Solutions
- Impact on Efficiency
- Burner Development Goals
- Burner Design Features
- Sample Field Results

Peabody Engineering

- Founded 1920
- Locations:
- Shelton, CT
- Norwich, NY
- Toronto, ON
- Mexico City (JV)

Factors Influencing NOX Emissions

- Heat Input
- Combustion Air Temperature
- Furnace Volume
- Furnace Dimensions
- Burner Spacing
- Fuel Composition
- Fuel Bound Nitrogen
- Other Emission Criteria

NO_X Solutions

- ■Low NO_x Burners
- System Solutions:
 - -Flue Gas Recirculation
 - -Water/Steam Injection
- ■Re-engineering Existing Burner Systems
- Combination of Above
- Solution is Boiler Specific

Low Emissions = Low Efficiency

Low NOx Burners:

Higher Burner RDL May operate at higher O2 levels Increased fan horsepower

Flue Gas Recirculation:

Increased mass flow Increased system pressure losses Increased fan horsepower Boiler heating surface considerations

Water / Steam Injection:

Water/Steam not recoverable Lower boiler efficiency

Efficiency Impact

- Example:
 - For a typical 40,000 PPH Packaged Boiler:
 - Fan Motor BHP:

With 15% FGR: 45Without FGR: 29

~50% Horsepower Penalty for FGR

Efficiency Impact

- What is the cost of:
 - 10 Fan HP per installation for FGR
 - Additional Electrical Costs
 - Additional Demand for the power provider (and associated power provider stack emissions)
 - 1% Boiler efficiency loss per installation
 - Additional fuel costs
 - Safety issues
 - Additional controls to assure flame stability

Burner Development Goals

- Applicable to Firetube or Watertube Boilers
- Dual Fuel (Natural Gas and/or Light Oil)
- Low NOx capability (30 ppm natural gas)
- Minimize System Pressure Losses (RDL, No FGR)
- Maximize Motor Efficiency
- Minimize Power Consuming Accessories (Air compressors, silencers, fuel pressure requirements)
- Compact Design (Easy fit on the boiler front)

ENVIROjet NOx Control

Low NOx Emissions

- Primary Combustion Zone
- Vitiation Zone
- Secondary Combustion Zone
- Main Flame

Envirojet Fan / Motor Design

- Slip Stream Motor Design
 - More Efficient
 - Combustion air passes over motor
 - No motor cooling fan required

Envirojet Fan / Motor Design

- Acoustically Lined Motor Housing
 - Provides Noise Levels <85 @ 3 ft.
 - Less pressure drop than conventional designs
 - More compact

Compact Design

- "Monoblock" Design
 - Integral Fan / Windbox Housing
 - Combined Motor Housing / Fan Silencer
 - Fan / Windbox Orientation is Rotatable

Minimize Power Consuming Accessories

- Cascade Mechanical Oil Atomizer
 - Eliminates Atomizing Steam
 - Eliminate Atomizing Air Compressor (HTHW applications)

Field Results - Park Place

- Park Place Resorts / Las Vegas, NV
 - 25,875 PPH Watertube Boiler
 - 33 MMBTU/HR Heat Input
 - NOx Requirement: 30 ppm (Natural Gas)
 - Fuel Fired: Natural Gas

Park Place

Equipment Performance:

NOx Emissions: 24 ppmFGR: 0 %

– CO Emissions: <50 ppm</p>

- Fan Motor HP: 25

– Noise Level: < 83 dBA @ 3*</p>

Field Results - United Hospital

- United Hospital / Clarksburg, WV
 - 12,000 PPH Watertube
 Boiler
 - 16.3 MMBTU/HR Heat Input
 - NOx Requirement: 30 ppm (Natural Gas)
 - Fuels Fired: Natural Gas I No. 2 Oil

Field Results - Bridgestone

- Bridgestone Tire / Japan (Retrofit)
 - 600 HP Firetube Boiler
 - 24.6 MMBTU/HR Heat Input
 - NOx Requirement: 35 ppm (Natural Gas)
 - Fuels Fired: Natural Gas / No. 2 oil
 - Variable Speed Drive Fitted

Bridgestone Tire

■ Equipment Performance:

- NOx Emissions: 30 ppm (50% Reduction)

- FGR: 0 %

– CO Emissions: <50 ppm</p>

- Electrical Consumption: 35 % reduction

Low NO_X Burner Retrofit Considerations

- Fan Static Capability
- Furnace Dimensions
- Burner Spacing
- Windbox Dimensions
- Air Flow Distribution
- Waterwall Openings
- Furnace Conditions
- Air / Flue Gas Ductwork Arrangement

MSC Burner Precise Flame Fit

- Custom Design Flame Geometry to Specific Furnace Dimensions/Burner Spacings
- Larger Flame Volume Minimizes Localized High Temperature Zones
- Longer Burnout Minimizes CO Emissions

MSC Burner Fuel / Air Staging

- Creates Fuel/Air Rich and Lean Zones
- Reduces Flame Temperature
- Minimizes Oxygen Availability to Reduce Thermal NO_x

MSC Burner Features

- Fixed Geometry
 - No modulating parts
 - Cannot be "accidentally" adjusted out of compliance
- External Gas Manifold
 - Eliminates potential for internal ring cracking
 - Gas spuds can be removed while firing oil

Case History

- Norfolk Naval Station
 - Background:
 - Package Boiler 150,000 PPH, 250 PSIG, 700°F Steam
 - Conversion of an Existing Low NO_X Burner Retrofit
 - Existing Burner:
 - Used 20% Forced FGR
 - Could not meet Specified NO_x Requirements
 - Caused excessive boiler vibration
 - Experienced frequent flame instability

- Peabody Solution
 - New Precision Flame Shape Low NO, Burner
 - Eliminated FGR Fan
 - Modified FGR Ducting

Norfolk Naval Station Results **Guarantees** <u>co</u> NO_x Natural Gas 66 ppm 134 ppm No. 2 Oil 78 ppm 128 ppm Note: Original burner designed for 20% Forced FGR Actual <u>NQ</u>_x <u>co</u> Natural Gas (10% IFGR) 20 ppm 9 ppm Natural Gas (No IFGR) 36 ppm 11 ppm No. 2 Oil (10% IFGR) 39 ppm 17 ppm Peabody Engineering

Case History: System Solution

- Background:
 - Louisiana Paper Mill
 - 225 K PPH Stoker Fired Boiler
 - Natural Gas Fired
 - Four Burners (Arranged 2 over 2)
 - 425°F Combustion Air
 - Existing NO_X Emissions 0.38 #/MMBTU

Louisiana Paper Mill

- Peabody Solution
 - Installed Four New Low NOX Burners
 - Added Steam Atomized Water Injection

Louisiana Paper Mill

- Results:
 - Reduced NO_x to 0.23 #/MMBTU with New Burners (39% Reduction)
 - Reduced NO_X to .135 #/MMBTU by Adding Water Injection (42% Reduction)
 - Overall NOX Reduction of 64%

Case History:

- 705,000 PPH Field Erected Boiler
 - 963 MMBTU/HR Heat Input
 - Six Burners (3 over3)
 - Natural Gas
 - Ambient Combustion Air
 - Replaced Existing Register Style Burners Originally Furnished with the Boiler

Case History

- Peabody Solution
 - Installed Six New Low NO_x Burners
 - Reused Existing Windbox (w/o Modeling)
 - Reused Existing Waterwall Openings
 - Reused Existing Forced Draft Fan (Original Burner RDL less than 6" WC)

Case Study

- Results:
 - Actual Measured NO_x: 0.063 #/MMBTU
 - Actual Measured CO: 0.034 #/MMBTU
 - Actual Burner RDL: 5.5" WC (@ 10% XS Air)

Summary

- Low NO_x Solution is Boiler Specific
- Burner Solutions Can Meet Most Low NOX requirements
- Burners / Burner Modifications Can Minimize NO_X Entering Post Combustion Apparatus (SCR), thus Minimizing Size of SCR

Contact Information

 Peabody Engineering Corporation 1000 Bridgeport Avenue
 Shelton, CT 06484
 Lawrence Berry
 National Sales Manager
 203-926-1111
 lberry@peabodyengineering.com
 www.peabodyengineering.com

